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Abstract
The operatorial theory of optical polarization devices can provide some of the
clearest examples in which von Neumann’s model of orthogonal measurement
is violated. This paper analyses the global and spectral properties of some
two- and three-layer optical polarizers of non-orthogonal kind by calculating
the dyadic expressions of their operators in a Dirac-algebraic form. These
constitute some of the most expressive examples of non-Hermitian operators
corresponding to generalized observables and it is expected that the theory of
generalized quantum measurement will take advantage of the simplicity of their
physical realization.

PACS numbers: 03.65.Ta, 42.25.Ja, 02.30.Tb

1. Introduction

One of the postulates of the standard theory of measurement in quantum mechanics is that an
observable is represented by a Hermitian operator and that a measurement corresponds to a
perpendicular projection of the state vector of the physical system on one of the eigenvectors
of the measuring device [1–3]. This is the so-called von Neumann’s model of orthogonal
measurement and constitutes the basis of the standard formalism of quantum mechanics.

It is an important recent insight that in many quantum mechanical experiments that have
actually been performed, the axioms of the standard formalism are violated. Among others,
many measurements are not orthogonal projections [1, 3]. Correspondingly, the notion of
generalized measurement was introduced in quantum mechanics [3]. A generalized formalism
of quantum mechanics [3, 4] is undergoing elaboration, which includes the standard formalism
as a particular case.

In the generalized formalism, the class of operators corresponding to observables is
enlarged and the non-normal operators play an important role [5].

Well known and one of the clearest ways of introducing the fundamental concepts and
the postulates of quantum mechanics is by analysing the interaction of the photons with the
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polarizing optical devices in (mental) photon-by-photon experiments. Dirac himself opened
this way [6] and some textbooks of quantum mechanics very important from an epistemological
viewpoint [7, 8], follow it, too.

So far, the optical polarizers taken into account in introducing the axioms of quantum
mechanics via considerations on polarization experiments [6–9], were only of orthogonal kind.

For example, a standard linear polarizer of azimuth zero is described by the orthogonal
projector:

P|Px 〉 = |Px〉〈Px | (1)

its eigenvectors being |Px〉 and |Py〉, the x and y linear polarized states.
A standard left-handed circular polarizer is also a device of orthogonal kind. The

corresponding operator:

P|L〉 = |L〉〈L| (2)

is normal. Its eigenvectors are orthogonal: |L〉 and |R〉, the left- and right-circularly polarized
states.

All the operators describing the basic (‘canonical’) polarizers are Hermitian, so that they
describe standard observables. Moreover, the operators of all the basic devices (homogeneous
polarizers, linear retarders and rotators) [10, 11] are normal operators, their eigenvectors are
orthogonal, i.e. all the canonical polarization devices are of orthogonal kind.

But this is not the general situation, nor representative, in what concerns polarization
devices.

First, many polarization devices are inhomogeneous (multilayer). Each layer of such a
composite device is usually of orthogonal kind (the corresponding eigenstates are orthogonal).
Sometimes such a multilayer polarization device is equivalent to a basic polarizer or retarder.
In this case its polarization state eigenvectors are orthogonal, the corresponding operator is
normal and its eigenform contains only perpendicular projectors. But often the eigenstates of
a multilayer device are not orthogonal [12].

This situation is more general in polarization optics. The two eigenstates corresponding
to an arbitrary direction of propagation in some crystal are generally not orthogonal [13].

In this paper I shall calculate the expressions of some simple two- and three-layer optical
polarizers of non-orthogonal kind. These constitute some of the most expressive examples
of non-Hermitian operators corresponding to generalized observables. The way of analysis I
have chosen here is based on the spectral theory of linear operators [14, 15], expressed in a
Dirac-algebraic form [16, 17]. A polar analysis will be given in a forthcoming paper.

The paper is organized as follows. In section 2 we briefly review some fundamental
results of the spectral analysis of linear operators in finite-dimensional vector space. Next we
calculate, on this basis, the proper and improper expressions of the operators of some basic
polarization devices by means of which the non-Hermitian multilayer polarizers taken into
consideration in section 3 are formed. In the last section we shall perform a detailed analysis
of the external (global) and internal (spectral) properties of these non-Hermitian polarizers.

2. Proper and improper expressions of the operators of some basic polarization devices

2.1. Expansion of a linear operator in its proper (eigen-) basis and in an improper basis

Let us consider a linear operator, L , defined on a finite-dimensional vector space and let
{|Si〉}, (i = 1, . . . , N) be an orthonormal basis in this space. Denoting by T the identity
operator and making use of the closure (completeness) relation [18]:∑

|Si〉〈Si | = T (3)
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we may write:

L = T L T =
∑
i,j

|Si〉〈Si |L |Sj 〉〈Sj | =
∑
i,j

〈Si |L |Sj 〉|Si〉〈Sj |. (4)

Thus, any linear operator may be uniquely expanded in a double series of ‘basic operators’
[18], |Si〉〈Sj |, associated with the basis {|Si〉} of the vector space on which the operator is
defined.

An operator of the kind |Si〉〈Si | is a perpendicular projector: it gives the perpendicular
projection [15] of any ket |S〉 onto the ket |Si〉.

An operator of the kind |Si〉〈Sj | (i �= j) converts the fraction 〈Sj |S〉 corresponding to
the ket |Sj 〉 of any ket |S〉, into a ket |Si〉 and can be denominated converter (operator of
conversion) or cross-projector. Such a converter, or cross-projector, is of orthogonal kind,
the unit vectors |Si〉 and |Sj 〉 being orthogonal. The term cross-projector is very expressive
and adequate in characterizing the action of such an operator but handled without caution it
could give rise to some confusion. Obviously, a cross-projector is not idempotent, hence the
cross-projectors do not pertain to the class of operators known under the name of projectors in
the theory of linear operators. Particularly, in the polarization state space, the perpendicular
cross projectors are nilpotents of index II.

If |Si〉 constitutes an orthonormal basis of eigenvectors of the operator L itself (case in
which L must be a normal operator):

L |Si〉 = λi |Si〉 (5)

〈Si |Sj 〉 = δij (6)

expansion (4) becomes

L =
∑

i

λi |Si〉〈Si | (7)

This is the well-known expansion of a normal operator in terms of its eigenvectors and
eigenvalues [18], its so-called spectral expansion1 [14].

In polarization optics, the state space being two dimensional, for the device operators D
corresponding to the polarization devices, expressions (4) and (7) reduce to

D =
2∑

i=1

2∑
j=1

〈Si |D |Sj 〉|Si〉〈Sj | (8)

and

D = λ1|S1〉〈S1| + λ2|S2〉〈S2|. (9)

By using the last expression, we shall establish the expansions of some basic birefringent
device (instrument) operators in their eigenrepresentations—the so-called eigen- or proper
expansions of the device operators. Improper expansions of the basic device operators will be
obtained too, which correspond to equation (8).

2.2. Eigenforms of the operators of some basic polarization devices

The basic (or ‘canonical’, [11]) polarization optical devices are the homogeneous polarizers
and retarders. The most convenient classification of these devices, for our purposes, is that
based on their eigenpolarization and eigenvalues.
1 Here the term spectral has the sense used in the theory of linear operators.
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The basic polarization device operators are normal: their eigenvectors are mutually
orthogonal.

The eigenstates of an ideal elliptic homogeneous retarder are orthonormal and their
associated eigenvalues are pure phase factors:

λ1 = exp(iδ/2) λ2 = exp(−iδ/2) (10)

where δ is the relative retardance introduced between the fast and slow eigenstates [10].
If we label by |EM〉 and |Em〉 the major and the minor eigenvectors of some elliptic

homogeneous retarder, by using (9) its operator may be written as

R|EM 〉(δ) = |EM〉〈EM | exp(iδ/2) + |Em〉〈Em| exp(−iδ/2). (11)

Since the eigenvalues of any elliptic ideal homogeneous retarder operator are unimodular,
(10), all these operators are unitary operators.

Thus, the eigenform of the device operators of a linear retarder with azimuth of the fast
axis θ is

R|Pθ 〉(δ) = |Pθ 〉〈Pθ | exp(iδ/2) + |Pθ+90◦ 〉〈Pθ+90◦ | exp(−iδ/2) (12)

For a linear retarder of azimuth zero we get

R|Px 〉(δ) = |Px〉〈Px | exp(iδ/2) + |Py〉〈Py | exp(−iδ/2) (13)

and so on.
An elliptic homogeneous ideal polarizer is characterized by orthogonal eigenstates whose

associated eigenvalues are unity and zero [10]. If we denote by |E〉 the transmitted eigenstate
(the principal, major, eigenvector), by virtue of (9) the device operators of an ideal elliptic
polarizer may be written as

P|E〉 = |E〉〈E| (14)

For example:

P|Px 〉 = |Px〉〈Px | (15)

for a linear polarizer of azimuth zero, and

P|Pθ 〉 = |Pθ 〉〈Pθ | (16)

for a linear polarizer of azimuth θ .
From a mathematical viewpoint, the operators (14)–(16) are perpendicular projectors.
An elliptic homogeneous partial polarizer can be characterized by two orthogonal

eigenstates |El〉 and |Eh〉 whose associated eigenvalues are λl = exp(α/2) and λh =
exp(−α/2) respectively. The indices l and h refer to the low and high absorption eigenstates
and α represents the relative attenuation of these eigenstates by the partial polarizer [10].

By using equation (9), the operator of an elliptic partial polarizer can be put in the form:

Q|El〉(α) = |El〉〈El| exp(α/2) + |Eh〉〈Eh| exp(−α/2). (17)

This is a Hermitian operator.
All these operators, the operators of the basic (‘canonical’) polarization devices are

normal operators. Their eigenvectors are orthogonal. Their constitutive projectors are of
perpendicular kind. The devices are of orthogonal kind.
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2.3. Improper expressions of the operators of some canonical polarization devices in
Cartesian basis

All the expressions of the type given so far for the device operators are eigenforms of these
operators (each operator is expressed in terms of its eigenprojectors and eigenvalues). The
operators of linear retarders and polarizers are expanded in the corresponding rectangular
bases, the operators of circular retarders and polarizers in the circular basis and those of
elliptical devices in their own elliptical basis.

In order to build up a physically expressive form of a composite polarization device
operator, we have to develop the calculus coherently in a unique and adequate basis, i.e. we
have to transpose the expressions of all the operators of the individual constituent devices into
the same, generally improper, basis.

A possibility is to start with the eigenforms of each operator—expressions of kind (9)—
and to transpose each of the involved eigenvectors into the unique chosen basis, i.e. to perform
a change of basis at the level of state vectors.

Another possibility is to introduce the eigenexpression of the operator in (8), i.e. to
perform the change of basis directly at the level of the operators.

No matter which way we adopt, we have to make use of the relationship between the
unit vectors of different orthogonal bases implied in the calculus. This relationship may be
expressed either in the form of the linear relations between these unit vectors, or in the form
of their scalar products.

The connection between the circular basis unit vectors {|R〉, |L〉} and those of the Cartesian
{|Px〉, |Py〉} basis may be expressed in the form:

|R〉 = 1√
2

[|Px〉 + i|Py〉] (18)

|L〉 = 1√
2

[|Px〉 − i|Py〉] (19)

From (18) and (19) one also obtains

|Px〉 = 1√
2

[|R〉 + |L〉] (20)

|Py〉 = 1√
2

i[|L〉 − |R〉] (21)

Generally, a linearly polarized state |Pθ 〉 may be developed in the {|Px〉, |Py〉} basis as follows:

|Pθ 〉 = cos θ |Px〉 + sin θ |Py〉. (22)

The only scalar products of the basic unit vectors we need in the following, apart from
the orthogonality relations of the pair of unit vectors of the same basis, are

〈Px | Pθ 〉 = 〈Pθ | Px〉 = cos θ (23)

〈Py | Pθ 〉 = 〈Pθ | Py〉 = sin θ. (24)

〈L | P45◦ 〉 = 〈P45◦ | L〉∗ = 1

2
(1 + i) = 1√

2
eiπ/4 (25)

〈L | P−45◦ 〉 = 〈P−45◦ | L〉∗ = 1

2
(1 − i) = 1√

2
e−iπ/4. (26)

which can be easily deduced from (18)–(22).
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Starting with the eigenform of any operator, and making use of the relationship between
the unit vectors of various bases, or introducing it in (8) and using the values of the scalar
products of the various states, one may obtain the improper form of the operator in the chosen
basis.

For example, by using (16) and (22) it is straightforward that:

P|Pθ 〉 = [cos θ |Px〉 + sin θ |Py〉][cos θ〈Px | + sin θ〈Py |]
= cos2 θ |Px〉〈Px | + sin θ cos θ [|Px〉〈Py | + |Py〉〈Px |] + sin2 θ |Py〉〈Py |.

Alternatively, by using (16) in (8), the expansion of P|Pθ 〉 in the {|Px〉, |Py〉} basis may
be written as

P|Pθ 〉 = 〈Px |Pθ 〉〈Pθ |Px〉|Px〉〈Px | + 〈Px |Pθ 〉〈Pθ |Py〉|Px〉〈Py |
+ 〈Py |Pθ 〉〈Pθ |Px〉|Py〉〈Px | + 〈Py |Pθ 〉〈Pθ |Py〉|Py〉〈Py |

and, with (23) and (24):

P|Pθ 〉 = cos2 θ |Px〉〈Px | + sin θ cos θ [|Px〉〈Py | + |Py〉〈Px |] + sin2 θ |Py〉〈Py |. (27)

The projector P|Pθ 〉 is, obviously, a Hermitian operator. In this expansion, (27), the
projectors |Px〉〈Px |, |Py〉〈Py | are Hermitian. The cross-projectors |Px〉〈Py | and |Py〉〈Px | are
not Hermitian. But they are Hermitian conjugates of each other, so that their sum is a Hermitian
operator.

Similarly starting with eigenform (12) of the linear retarder of fast axis azimuth θ and
making use of (22), one obtains:

R|Pθ 〉(δ) = [cos2 θ exp(iδ/2) + sin2 θ exp(−iδ/2)]|Px〉〈Px |
+ 2i sin θ cos θ sin

δ

2
[|Px〉〈Py | + |Py〉〈Px |]

=
(

cos
δ

2
+ i cos 2θ sin

δ

2

)
|Px〉〈Px | + i sin 2θ sin

δ

2
[|Px〉〈Py |

+ |Py〉〈Px |] +

(
cos

δ

2
− i cos 2θ sin

δ

2

)
|Py〉〈Py |. (28)

In these improper forms it is also evident that all these operators are normal. All their
constitutive projectors and converters are of perpendicular kind.

3. Non-Hermitian polarizers

3.1. Horizontal linear polarizer followed by a linear polarizer at an angle θ

This sequence of standard (orthogonal) ideal linear polarizers provides the simplest example
of a non-orthogonal device in polarization optics. It is an inhomogeneous linear polarizer of
azimuth θ , whose operator is, as we shall see, non-normal, and non-Hermitian.

Let us expand the operator, P1, of this sandwich. With (27) and (15), one obtains:

P1 = P|Pθ 〉P|Px 〉
= [cos2 θ |Px〉〈Px | + sin θ cos θ |Px〉〈Py | + sin θ cos θ |Py〉〈Px | + sin2 θ |Py〉〈Py |]|Px〉〈Px |
= [cos2 θ |Px〉〈Px | + sin θ cos θ |Py〉〈Px |
= cos θ [cos θ |Px〉 + sin θ |Py〉]〈Px | = cos θ |Pθ 〉〈Px |. (29)

Particularly for this device a simpler calculus may be done. We do not need to change the
basis for one of the constituent operators:

P1 = P|Pθ 〉P|Px 〉 = |Pθ 〉〈Pθ |Px〉〈Px | = cos θ |Pθ 〉〈Px |
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The device is a converter, which changes any incident light state, |E〉, into |Pθ 〉, through
|Px〉: the polarizer P|Px 〉 converts a percentage |〈Px |E〉|2 of the incident light photons into its
transmitted eigenstate, |Px〉, and the polarizer P|Pθ 〉 converts the percentage cos2 θ of them
into the final state |Pθ 〉.

Unlike converters |Si〉〈Sj | encountered in (4), the converter |Pθ 〉〈Px | which occurs in (29)
is not of orthogonal kind. It converts the fraction of the state |E〉 corresponding to the state
|Px〉 into the state |Pθ 〉, and these two last states are not orthogonal. The operator |Pθ 〉〈Px | is
a skew converter.

The only state which passes unchanged (apart from a factor) through this device is |Pθ 〉:
P1|Pθ 〉 = cos θ |Pθ 〉〈Px | Pθ 〉 = cos2 θ |Pθ 〉 (30)

The state |Py〉 is blocked by the device:

P1|Py〉 = cos θ |Pθ 〉〈Px | Py〉 = 0 (31)

Thus, the eigenvectors and the eigenvalues of the polarizer P1 are

|Pθ 〉 with λ1 = cos2 θ (32)

|Py〉 with λ2 = 0 (33)

The two eigenvectors of the polarizer P1 are not orthogonal; their inner product does
not vanish. The modulus of this scalar product was denoted by Lu and Chipman [12]
‘inhomogeneity parameter’ and its modulus squared ‘similarity factor’ by Pancharatnam [13].
For our purposes the term ‘degree of non-orthogonality’ is adequate. For P1,

η = |〈Pθ | Py〉| = sin θ. (34)

In conclusion, the polarizer P1 is a non-orthogonal device. Its eigenvectors are (excepting
the trivial case θ = 0) non-orthogonal. Its operator is non-normal, and non-Hermitian.
Nevertheless this polarizer prepares, for any input, the state |Pθ 〉; it corresponds to an
observable: linear polarized state of the photon, of azimuth θ . In fact it gives a non-orthogonal
projection of any input state |E〉 on its major eigenstate |Pθ 〉.

As the orthogonal polarizer (1) converts the incident photons into its transmitted eigenstate
|Px〉 or blocks them (state |Py〉), the non-orthogonal linear polarizer (29) converts them into
its transmitted eigenstate |Pθ 〉 or blocks them (state |Py〉). Both linear polarizers project any
incident state of optical polarization (SOP) in their transmitted eigenstates, |Px〉, respectively
|Pθ 〉. The only difference is that (1) performs an orthogonal projection, while (29) a non-
orthogonal (oblique) one. The homogeneous linear polarizer (1) corresponds to a standard
observable, and the inhomogeneous linear polarizer (29) corresponds to a generalized one.

As we shall see, a common feature of the non-orthogonal polarization devices is that their
forward- and backward-looking properties differ.

Reversing the direction of propagation of the incoming light in this sandwich of two linear
polarizers, the device operator becomes

P ′
1 = P|Px 〉P|P−θ 〉

= |Px〉〈Px |[cos2 θ |Px〉〈Px | − sin θ cos θ |Px〉〈Py | − sin θ cos θ |Py〉〈Px | + sin2 θ |Py〉〈Py |]
= cos2 θ |Px〉〈Px | − sin θ cos θ |Px〉〈Py |
= cos θ |Px〉[cos θ〈Px | − sin θ〈Py |] = cos θ |Px〉〈P−θ |. (35)

Thus, viewed from the opposite side, the device looks like a non-orthogonal linear polarizer
of azimuth zero, which converts cos2 θ |〈P−θ |E〉|2 photons of the incident light into the state
|Px〉.
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Its eigenstates and eigenvalues are, obviously:

|Px〉 with λ1 = cos θ〈P−θ | Px〉 = cos2 θ (36)

|P90◦−θ 〉 with λ2 = 0. (37)

The degree of non-orthogonality of the two polarizers P1 and P ′
1 is the same:

η = |〈Pθ | Py〉| = |〈Px |P90◦−θ 〉| = sin θ (38)

The linear polarizer (29)–(35) is the simplest and the most expressive example of non-
orthogonal polarization devices, but it is somewhat artificial. Let us consider now some
widespread polarizers of non-orthogonal kind.

3.2. Horizontal linear polarizer followed by a half-wave linear retarder at an angle θ/2

Such an arrangement is used in the half-shade analyser of the polarimeters. Keeping in mind
that a half-wave plate shifts the plane of polarization of the linear polarized incident light
symmetrically with respect to its principal axis, it is clear that such a sandwich acts as a linear
polarizer of azimuth θ . It is an inhomogeneous non-orthogonal θ -linear polarizer.

By using (28) and (15), the operator of this device may be expanded in the {|Px〉, |Py〉}
basis as follows:

P2 = R|Pθ/2〉(π)P|Px 〉
= [i cos θ |Px〉〈Px | + i sin θ |Px〉〈Py | + i sin θ |Py〉〈Px | − i cos θ |Py〉〈Py |]|Px〉〈Px |
= i cos θ |Px〉〈Px | + i sin θ |Py〉〈Px | (39)

an expression which does not coincide with that of a homogeneous (and orthogonal) polarizer
of azimuth θ (16). That is quite normal, because the sandwich described by equation (39) is
not an orthogonal polarization device.

We can readily put the expansion (39) in a physically expressive form. With (16), the last
form of (39) becomes:

P2 = R|Pθ/2〉(π)P|Px 〉 = i[cos θ |Px〉 + sin θ |Py〉]〈Px |�̇|Pθ 〉〈Px | (40)

where �̇ stands for ‘it is the same as’; the phase factor i has no relevance in defining the type
of device.

In (40) it is obvious that the device is a skew converter: it selects the percentage |〈Px |E〉|2of
the incident, |E〉, photons and converts them into |Pθ 〉 photons.

The eigenvectors and the eigenvalues of the device are

|Pθ 〉 with λ1 = 〈Px |Pθ 〉 = cos θ (41)

|Py〉 with λ2 = 0. (42)

Obviously, the eigenvectors are not orthogonal. This sandwich is a non-orthogonal θ linear
polarizer.

If the light is propagating in a reverse direction, the device is viewed as

P ′
2 = P|Px 〉R|P−θ/2〉(π)

= |Px〉〈Px |[i cos θ |Px〉〈Px | − i sin θ |Px〉〈Py | − i sin θ |Py〉〈Px | + i cos θ |Py〉〈Py |]
= i cos θ |Px〉〈Px | − i sin θ |Px〉〈Py | (43)

the operator and its action on the incident light differ from (39). With (22) we get:

P ′
2 = i|Px〉	cos θ〈Px | − sin θ〈Py |
 �̇ |Px〉〈P−θ | (44)
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The device is an inhomogeneous non-orthogonal linear x-polarizer, which converts
|〈P−θ | E〉|2 photons of the incident light |E〉 in |Px〉. It is a skew converter.

The eigenvectors and the eigenvalues of the device are

|Px〉 with λ1 = 〈Pθ | Px〉 = cos θ (45)

|P90◦−θ 〉 with λ2 = 0. (46)

Again, the backward-looking properties of the sandwich differ from its forward-looking
properties.

Both the operators P2 and P ′
2 are non-normal, non-Hermitian and nevertheless they

correspond to observables: linear polarized states of azimuth θ , (40), and zero, (44),
respectively. Their degree of non-orthogonality is the same:

η = |〈Pθ |Py〉| = |〈Px | P90◦−θ 〉| = sin θ. (47)

This sandwich has a remarkable peculiarity. It allows us to define a physical device
corresponding to an orthogonal converter. We have seen that such a converter has the general
expression |Si〉〈Sj |, where the states |Si〉, |Sj 〉 are orthogonal. For example, |Py〉〈Px | is an
orthogonal (x → y) converter.

At first sight, we could believe that a (x → y) converter could be built by crossing a linear
P|Px 〉and a linear P|Py 〉 polarizer. But evidently such a device extinguishes any incident light.
It is a light annihilator:

P|Py 〉P|Px 〉 = |Py〉〈Py | Px〉〈Px | = 0

Let us turn back to the sandwich (40) (similar considerations are valuable for the reversed
variant (44)):

For θ/2 = 0 it becomes a P|Px 〉 polarizer (its operator becomes the orthogonal projector
|Px〉〈Px |).

For θ/2 = 45◦, the device becomes a x → y converter: its operator is |Py〉〈Px |. This
result may be confirmed by some physical consideration. It is well known that a half-wave
plate changes the azimuth of the linearly polarized incident light symmetrically with respect
to its own principal axis. If the incident light is linearly polarized at 45◦ to this principal axis,
the azimuth is changed by 90◦. Thus, for θ/2 = 45◦, the sandwich (40) acts as an orthogonal
x → y converter.

It is worth pointing out that this is not the case for the previous non-orthogonal polarizer
(A): for θ = 0, P1 (29) becomes an orthogonal projector |Px〉〈Px |, but for θ = 90◦ it becomes
a light annihilator. Mathematically this happens because of the factor cos θ that (29) contains
(and (40) does not contain). Physically this is the x → y annihilator discussed above (two
crossed homogeneous linear polarizers).

3.3. Non-orthogonal two-layer circular polarizer

Circular polarizers are commonly made by laminating together a linear polarizer and a linear
π/2 retarder, with the transmission direction of the polarizer at 45◦ to the proper (‘fast’ and
‘slow’) axes of the retarder.

If the fast axis of the retarder is the x-axis and the azimuth of the polarizer is +45◦ with
respect to this axis, the operator of the device is

C = R|Px 〉(π/2)P|P45
◦ 〉 (48)
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With (28) for θ = 0, δ = π/2 and (27) for θ = 45◦, this expression may be expanded, in
the {|Px〉, |Py〉} basis, as follows:

C = [
ei π

4 |Px〉〈Px | + e−i π
4 |Py〉〈Py |

]1

2
[1 + |Px〉〈Py | + |Py〉〈Px |]

= 1

2

[
ei π

4 |Px〉〈Px | + e−i π
4 |Py〉〈Py | + ei π

4 |Px〉〈Py | + e−i π
4 |Py〉〈Px |

]

= 1

2
ei π

4 |Px〉[〈Px | + 〈Py |] +
1

2
e−i π

4 |Py〉[〈Px | + 〈Py |]

= 1

2
ei π

4
[|Px〉 + e−i π

2 |Py〉
]
[〈Px | + 〈Py |]

= ei π
4

1√
2

[|Px〉 − i|Py〉] 1√
2

[〈Px | + 〈Py |]

and, with (19) and (22), we obtain

C� = ei π
4 |L〉〈P45◦|. (49)

I have marked by the index � the fact that the circular polarizer (49) is a left-handed one. By
acting on a general elliptical SOP, |E〉:

C�|E〉 �̇ |L〉〈P45◦ |E〉
this polarizer converts the percentage |〈P45◦ |E〉|2 of the incoming |E〉 photons corresponding
to the |P45◦ 〉 state, into the final |L〉 state.

Comparing (49) with (2), it is obvious that the inhomogeneous left-circular polarizer C�

is quite another polarization device than the homogeneous left-circular polarizer P|L〉. From
a mathematical viewpoint P|L〉, (2), is a perpendicular projector, whereas C�, (49), is a skew
converter; the states |P45◦ 〉 and |L〉 are not orthogonal.

Let us now make the spectral analysis of this converter: which are its eigenvectors and
eigenvalues?

It is obvious that its major eigenvector is |L〉: the |L〉 state passes through the
inhomogeneous circular polarizer (49) unchanged apart from an attenuation and phase factor.
On the other hand, the state |P−45◦ 〉, orthogonal to |P45◦ 〉, is completely blocked by the device
(by the polarizer P|P45

◦ 〉); thus the minor eigenvector of the device is |P−45◦ 〉. Also making
use of (25), the spectral characteristics of the device may be summarized as

major eigenvector |L〉 with the eigenvalue ei π
4 〈P45◦ |L〉 = 1/

√
2 (50)

minor eigenvector |P−45◦ 〉 with the eigenvalue zero. (51)

The two eigenvectors are not orthogonal; consequently the operator (49) is a non-normal
operator. The device is of non-orthogonal kind.

For comparison, the canonical left-circular polarizer P|L〉, (2), is a device of orthogonal
kind: its eigenvectors are |L〉 and |R〉, obviously orthogonal.

If the input face of the device is that of the polarizer, the device operator becomes

P3 = P|P−45
◦ 〉R|Px 〉(π/2) (52)

With (27) for θ = −45
◦

and (28) for θ = 0, δ = π/2, we obtain further:

1

2
[1 − |Px〉〈Py | − |Py〉〈Px |]

[
ei π

4 |Px〉〈Px | + e−i π
4 |Py〉〈Py |

]

= 1

2

[
ei π

4 |Px〉〈Px | + e−i π
4 |Py〉〈Py | − e−i π

4 |Px〉〈Py | − ei π
4 |Py〉〈Px |

]
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= 1

2
ei π

4 [|Px〉 − |Py〉]〈Px | +
1

2
e−i π

4 [|Py〉 − |Px〉]〈Py |

= ei π
4

1

2
[|Px〉 − |Py〉]

[〈Px | − e−i π
2 〈Py |

]

= ei π
4

1√
2

[|Px〉 − |Py〉] 1√
2

[〈Px | + i〈Py |]

and, with (22) for θ = −45◦ and (19)

P3 = P|P−45
◦ 〉R|Px 〉(π/2) = ei π

4 |P−45◦ 〉〈L|. (53)

This time, viewed from the opposite side, the device looks like a non-orthogonal linear
polarizer.

Its eigenvectors and eigenvalues are

|P−45◦ 〉 with λ1 = ei π
4 〈L|P−45◦ 〉 = 1/

√
2 (54)

|R〉 with λ2 = 0 (55)

where we have made use of (26).
In conclusion, the widespread inhomogeneous (two-layer) circular polarizer is another

example of a non-orthogonal polarization device.
Its forward-looking features differ from the backward-looking ones. In one direction it

acts really as a circular polarizer C�, (49), but in the opposite direction it acts as a linear
polarizer P3, (53).

From a spectral viewpoint (inner properties of the operators), in both variants the
eigenvectors of this sandwich are non-orthogonal, with the same degree of non-orthogonality:

η = |〈L|P−45◦ 〉| = |〈P−45◦ |R〉| = 1√
2

(56)

From the viewpoint of its global (external) properties, in both cases the device reduces
(apart from a complex factor) to a skew converter.

From its spectral properties as well as from its global properties it is also evident that
viewed from both sides the device is of non-orthogonal kind, and its operators are non-normal:

C�C
†
� �= C †

� C� P3P
†
3 �= P†

3P3 (57)

non-Hermitian:

C� �= C †
� P3 �= P†

3 (58)

where the dagger superscript stands for adjoint.
But each of these operators corresponds to an observable (left-circular polarized state and

linear polarized −45◦ state, respectively).
Finally we have to note that a more general, elliptic, non-orthogonal polarizer is obtained

if, instead of a P|P45
◦ 〉, a P|Pθ 〉 linear polarizer is used in (48) [19, 20]. The non-orthogonality

of this polarizer was expressed by Berry and Klein ([19], appendix A) by pointing out that the
extinguished state of the device is not orthogonal to the transmitted one, but to the state passed
by the linear polarizer, a statement to which our results (50) and (51) correspond.

Almost all the operators of the polarizers we have analysed above are simple (they have
a complete set of eigenvectors, here two) and singular (one of the eigenvalues is zero). This
is the case for all the homogeneous ideal orthogonal polarizers (1), (2), (14)–(16), as well as
for the non-orthogonal polarizers (29), (35), (40), (44), (49), (53). All these operators have
two distinct eigenvectors and, for each of them, one of the eigenvectors is annihilated by the
corresponding operator.
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But we have encountered, as a particular case of one of the previously discussed devices
(end of section 3.2), a very special device: the orthogonal converter

|Py〉〈Px |. (59)

This device has only one eigenvector, |Py〉, which is annihilated by its operator. The
operator (59) is no longer a simple one, it is defective (degenerate) and, at the same time,
singular.

We have imagined the device corresponding to the operator (59)—more or less
artificially—as a special case of the non-orthogonal polarizition device (40), for illustrating the
physical realization of an orthogonal converter. In the following we shall analyse the operator
of a widespread polarization device which pertains to this very special class of defective
singular operators.

3.4. Ambidextrous three-layer circular polarizer

One can make an ambidextrous circular polarizer by sandwiching a linear polarizer at 45◦

between two suitable oriented 90◦ linear retarders [20].
Let us consider the following arrangement:

R|Px 〉(π/2)P|P45
◦ 〉R|Px 〉(π/2). (60)

With (12) for θ = 0 and (27) for θ = 45◦, the operator (60) may be developed in the
{|Px〉, |Py〉} basis as follows:
[
ei π

4 |Px〉〈Px | + e−i π
4 |Py〉〈Py |

]1

2
[1 + |Px〉〈Py | + |Py〉〈Px |]

[
ei π

4 |Px〉〈Px | + e−i π
4 |Py〉〈Py |

]

= 1

2

[
ei π

4 |Px〉〈Px | + e−i π
4 |Py〉〈Py |

][
ei π

4 |Px〉〈Px | + e−i π
4 |Py〉〈Py |

+ e−i π
4 |Px〉〈Py | + ei π

4 |Py〉〈Px |
]

= 1

2

[|Px〉〈Py | + ei π
2 |Px〉〈Px | + |Py〉〈Px | + e−i π

2 |Py〉〈Py |
]

= i

2
|Px〉[〈Px | − i〈Py |] +

1

2
|Py〉[〈Px | − i〈Py |]

= i
1√
2

[|Px〉 − i|Py〉] 1√
2

[〈Px | − i〈Py |]

R|Px 〉(π/2)P|P45
◦ 〉R|Px 〉(π/2) = i|L〉〈R|. (61)

Thus, the three-layer device (60) and (61) is a |R〉 → |L〉 converter and gives, for any
input, left-circularly polarized output. Any incoming SOP is converted by the device into
left-circular light. It is evident from (61) that this device has only one eigenstate, namely |L〉,
and for this state the eigenvalue is zero, i.e. the unique eigenstate of the device is completely
blocked. Polarization devices having only one eigenpolarization are said to have degenerate
anisotropy [10]. The device (61) is a degenerate polarizer.

If the light comes from the opposite side, the same three-layer sandwich looks like

R|Px 〉(π/2)P|P−45
◦ 〉R|Px 〉(π/2) (62)

which, again with (12) and (27), may be written successively as
[
ei π

4 |Px〉〈Px | + e−i π
4 |Py〉〈Py |

]1

2
[1 − |Px〉〈Py | − |Py〉〈Px |]

[
ei π

4 |Px〉〈Px | + e−i π
4 |Py〉〈Py |

]

= 1

2

[
ei π

4 |Px〉〈Px | + e−i π
4 |Py〉〈Py |

][
ei π

4 |Px〉〈Px | + e−i π
4 |Py〉〈Py |
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− e−i π
4 |Px〉〈Py | − ei π

4 |Py〉〈Px |
]

= 1

2

[−|Px〉〈Py | + ei π
2 |Px〉〈Px | − |Py〉〈Px | + e−i π

2 |Py〉〈Py |
]

= i

2
[|Px〉 − i|Py〉]〈Px | − 1

2
[|Px〉 − i|Py〉]〈Py |

= i
1√
2

[|Px〉 + i|Py〉] 1√
2

[〈Px | + i〈Py |] ≡ i|R〉〈L|.
In conclusion:

R|Px 〉(π/2)P|P−45
◦ 〉R|Px 〉(π/2) = i|R〉〈L|. (63)

This is a |L〉 → |R〉 converter and gives, for any input, right-circularly polarized light.
Its eigenstate is unique, |R〉, and the corresponding eigenvalue is zero.

Thus, the backward-looking properties of the device differ from the forward-looking ones.
From one side it is a degenerate left-circular polarizer, and from the other side it is a degenerate
right-circular polarizer; globally—an ambidextrous degenerate circular polarizer.

When, instead of P|P45
◦ 〉 , one uses in (60), more generally, a P|Pθ 〉 linear polarizer, an

ambidextrous degenerate elliptical polarizer is obtained.

4. Conclusions. Non–Hermitian polarizers in quantum measurements

In the standard formalism of quantum mechanics a measurement corresponds to a Hermitian
operator. The eigenvalues of this operator are the measurement results and the probabilities
are determined by the expectation values of the orthogonal projections on its eigenvectors.
These are the postulates of the Dirac–von Neumann formalism of quantum measurement.

A pertinent illustration of this formalism is given by the SOP measurement of the photons
by means of various standard (orthogonal) polarizers. Such a measurement corresponds to an
orthogonal projection of the initial SOP on the major eigenvector of the measuring device (the
polarizer).

It is by now well known that in many quantum mechanical experiments von Neumann’s
model of orthogonal measurement is violated, the measurement does not correspond to an
orthogonal projection; it does not have a standard character.

Once again the optical polarization can provide some very expressive examples of devices
and (SOP) measurement experiments which do not have an orthogonal but a generalized
character.

It turns out that the eigenvectors of some well-known inhomogeneous polarizers are not
orthogonal, i.e. these polarizers are not orthogonal devices, their operators are not Hermitian.
Consequently, a SOP measurement with such a device, preparative (using the device as
polarizer) as well as determinative (when the device plays the role of an analyser) does not
correspond to an orthogonal projection, is not a standard measurement but a generalized one.

In this paper I have presented and analysed in a quantum mechanical language the global
and spectral properties of some of these non-Hermitian polarizers. The analysis is given on
the basis of the spectral theory of linear operators, which is most directly connected with the
problem of quantum measurement. A polar analysis—which was suggested by the manuscript
referee and will constitute the object of a later paper—could give a further insight into the
properties of these non-Hermitian polarizers and, more general, of non-orthogonal polarization
devices.

The non-Hermitian character of these polarizers is emphasized by the analysis of internal
(spectral) as well as external (global) properties of their operators. The eigenvectors are not
orthogonal. The operators are not idempotent, i.e. are not orthogonal projectors.
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The reversed devices are also polarizers, but their global and spectral properties differ
strongly from those of the direct devices. In contrast, for a canonical polarizer these properties
are identical; such a polarizer is reversible.

What we have to point out, as an essential conclusion, is that in polarization optics there are
plenty of devices of non-orthogonal kind. Moreover, this is the natural situation in this field:
the two eigenvectors corresponding to an arbitrary direction of propagation in a crystal are
usually non-orthogonal. It is expected that the generalized formalism of quantum mechanics
will take advantage of this fact in its future development.
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[2] Prugovečki E 1981 Quantum Mechanics in Hilbert Space (New York: Academic)
[3] Preskill J 2001 Lectures Notes for Physics 229: Quantum Information and Computation webpage http://

www.theory.caltech.edu/people/preskill/ph229/#lecture, 2001
[4] de Muynck W M 2002 Foundation of Quantum Mechanics and Relativity Theory webpage http://www.phys.tue.

nl/ktn/Wim/qm12.htm
[5] de Muynck W M 1998 An alternative to the Lueders generalization of the von Neumann projection, and its

interpretation J. Phys. A: Math. Gen. 31 431–44
[6] Dirac P A M 1947 The Principles of Quantum Mechanics 3rd edn (Oxford: Clarendon)
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[9] Simmons J W and Guttmann M J 1970 States, Waves and Photons—A Modern Introduction to Light (Reading,

MA: Addison-Wesley)
[10] Azzam R M A and Bashara N M 1996 Ellipsometry and Polarized Light (Amsterdam: Elsevier)
[11] Brosseau C 1998 Fundamentals of Polarized Light. A Statistical Optics Approach (New York: Wiley)
[12] Lu S-Y and Chipman R A 1994 Homogeneous and inhomogeneous Jones matrices J. Opt. Soc. Am A 11 766–73
[13] Pancharatnam S 1956 Generalized theory of interference and its applications. I—Coherent pencils Proc. Indian

Acad. Sci. A 44 247–62
[14] Kato T 1966 Perturbation Theory for Linear Operators (Berlin: Springer)
[15] Halmos P R 1958 Finite-Dimensional Vector Space (Princeton, NJ: Van Nostrand)
[16] Brosseau C 1986 Synergy in polarization optics through the use of the Dirac formalism Optik 73 34–8
[17] Tudor T 2001 Spectral analysis of device operators: the rotating birefringent plate J. Opt. Soc. Am. A 18 926–31
[18] Messiah A 1965 Quantum Mechanics vol I (Amsterdam: North-Holland)
[19] Berry M V and Klein S 1996 Geometric phases from stacks of crystal plates J. Mod. Opt. 43 165–80
[20] Shurcliff W A 1962 Polarized Light (Cambridge, MA: Harvard University Press)


